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Abstract

The human brain's cerebral cortex exhibits a topographic division into higher-order

transmodal core and lower-order unimodal periphery regions. While timescales

between the core and periphery region diverge, features of their power spectra,

especially scale-free dynamics during resting-state and their mdulation in task states,

remain unclear. To answer this question, we investigated the �1/f-like pink noise

manifestation of scale-free dynamics in the core-periphery topography during rest

and task states applying infra-slow inter-trial intervals up to 1 min falling inside the

BOLD's infra-slow frequency band. The results demonstrate (1) higher resting-state

power-law exponent (PLE) in the core compared to the periphery region; (2) signifi-

cant PLE increases in task across the core and periphery regions; and (3) task-related

PLE increases likely followed the task's atypically low event rates, namely the task's

periodicity (inter-trial interval = 52–60 s; 0.016–0.019 Hz). A computational model

and a replication dataset that used similar infra-slow inter-trial intervals provide fur-

ther support for our main findings. Altogether, the results show that scale-free

dynamics differentiate core and periphery regions in the resting-state and mediate

task-related effects.
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1 | INTRODUCTION

The human brain's cerebral cortex exhibits a topography divideable

into higher-order transmodal core and lower-order unimodal periph-

ery regions (Bassett et al., 2008; Borgatti & Everett, 2000; Golesorkhi

et al., 2021; Gollo et al., 2015; Gollo et al., 2017; Huntenburg

et al., 2018; Margulies et al., 2016; Wang et al., 2019). Transmodal

core or association cortices, such as the default-mode, frontoparietal,

and cingulo-opercular networks, comprise longer intrinsic neuronal

timescales with more power in relatively slower frequencies

(de Pasquale et al., 2012; de Pasquale et al., 2018; van den Heuvel &

Sporns, 2013). Intrinsic neuronal timescales refer to wavelengths of

the brain's ongoing intrinsic activity, independent of task-evoked

activity, that can be measured by the length of the autocorrelation

function or window (Wolff et al., 2022). Unimodal periphery regions

include the visual, auditory, and somatomotor (SMN) cortices exhibit-

ing shorter intrinsic neuronal timescales where power is shifted

towards relatively faster frequencies compared to transmodal core

regions (Bassett et al., 2008; Borgatti & Everett, 2000; Golesorkhi

et al., 2021; Gollo et al., 2015; Gollo et al., 2017; Huntenburg

et al., 2018; Margulies et al., 2016; Wang et al., 2019). Intrinsic neuro-

nal timescales are preferably measured by the length of the
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autocorrelation function or window (ACW) (Golesorkhi et al., 2021;

Ito et al., 2020; Wolff et al., 2022) where longer and more powerful

timescales (wavelengths) correspond to higher ACW values and vice

versa. Functional magnetic resonance imaging (fMRI) and electrophys-

iological EEG /MEG studies observed a higher autocorrelation in

transmodal core than in unimodal periphery regions (Golesorkhi

et al., 2021; Wolff et al., 2022). Paradigmatically, time-series autocor-

relation was investigated by measuring so-called long-range temporal

correlations (LRTCs) that operate across the frequency band in elec-

trophysiological and hemodynamic studies (He, 2014; He et al., 2010;

Linkenkaer-Hansen et al., 2001; Tagliazucchi et al., 2013). While com-

putations in the time-domain allow estimating the degree of temporal

correlation in the recorded time-series, as provided by the autocorre-

lation and the Hurst exponent (Williams, 1997; Schroeder, 2009),

time-domain computations cannot reveal the precise scaling relation-

ship between frequency and power. Instead, scaling and scale-free

dynamics are best investigated in the log–log transformed frequency-

domain or power spectrum (Bassingthwaighte et al., 1994). These

findings raise the question of how the brain's scale-free dynamics

behave in the core-periphery topography during rest and task states.

Addressing this gap in the current literature is the goal of our fMRI

analysis.

Scale-free dynamics in the frequency-domain were frequently

observed in biological systems (Szendro et al., 2001) with invariance

across subjects and age in all imaging modalities, from invasive single-

unit recordings to scalp EEG and MEG, and whole-brain fMRI

(Fransson et al., 2013; Freeman et al., 2000; He, 2014; Linkenkaer-

Hansen et al., 2001) and are likely required for both healthy physio-

logical processes in the human body including brain activity

(Bassingthwaighte et al., 1994). Power spectra of the brain's sponta-

neous activity display scaling between frequency and power in

healthy subjects under wakefulness where power logarithmically

decreases as a function of frequency in fMRI (He, 2011; Huang

et al., 2017; Zhang et al., 2018). On the logarithmic scale, namely in

the log–log transformed frequency-domain, BOLD power spectra dis-

play inverse power-law distributions in the vicinity of 1/f pink noise

where power linearly decreases as a function of frequency with a

slope measured by the power-law exponent (PLE) (He et al., 2010;

Huang et al., 2017) of approximately �1 (�0.5 ≤ PLE ≤ �1.5 for pink

noise [Schroeder, 2009]). The degree of the inverse power-law distri-

bution's slope or the level of the PLE corresponds to different noise

colors, such as pink noise in fMRI under conscious wakefulness.

Functional MRI studies assessed PLE transitions from rest to task

states by applying relatively fast event-related task designs, hence

reflecting today's norm in fMRI (Huettel, 2012). Paradigmatically, He

(2011) observed a widespread PLE reduction across cortical regions

during a visual task relative to rest. Other studies observed a reduc-

tion of both the PLE and Hurst exponent in event-related task designs

compared to the resting-state (Barnes et al., 2009; Churchill

et al., 2016; He, 2011). Kasagi et al. (2017) showed that the task's

temporal structure or periodicity significantly impacts LRTCs including

the PLE in fMRI. In contrast, it remains an open question if and to

what extend the BOLD's infra-slow frequency band aligns with the

corresponding infra-slow band of environmental stimuli or tasks in the

core-periphery topography. The here utilized fMRI task design offers

a unique possibility to investigate precisely this question: infra-slow

inter-trial intervals (ITI = 52–60 s; 0.016–0.019 Hz) inside the BOLD's

frequency band allow testing whether scale-free dynamics shift power

more towards slower frequencies in very slow task periodicities across

the core-periphery topography. The here presented fMRI analysis

investigated scale-free dynamics in both rest and task states focusing

on the cortical core-periphery topography that is featured by higher-

order transmodal association and lower-order unimodal sensorimotor

cortices. Two established topographical templates from Schaefer/

Margulies (Margulies et al., 2016) and Ji/Ito (Ito et al., 2020) subse-

quently abbreviated SCP and JCP, were utilized to assess the cerebral

cortex core-periphery topography shown in Figure 1. Scale-free

dynamics were operationalized by the slope of log–log transformed

power spectra, namely the PLE.

To further validate the re-organization of power in task versus

rest, measured by the level of the PLE, we additionally computed the

mean frequency (MF) (Çatal et al., 2022; Golesorkhi et al., 2022). The

MF is a first-order moment statistic well-defined for power-law distri-

butions with exponents ≥2. However, fMRI recordings often show

lower exponents in the range of �0.5–1 (He, 2014; Huang

et al., 2017). While the inverse power-law slope is computed on a log-

arithmic scale, we computed the MF in a frequency band with lower

and upper limits (0.01–0.5 Hz) of the power spectrum on normal

(non-logarithmic) scale preventing the mean going up or down to

infinity (in case of theoretically infinite scaling). Even though the MF is

generally a moment statistic, the MF nonetheless indexes the balance

between slower and faster frequency power in the power spectrum.

Hence, the MF should systematically vary with the PLE in core and

periphery regions, including increases or decreases from rest to task

states. More precisely, PLE task increases should correspond to MF

decreases and vice versa. We investigated this hypothesis by individu-

ally comparing PLE and MF rest-task differences for all subjects (see

Section 3: PLE and MF rest-task differences) and by additionally com-

puting the PLE-MF correlation on a voxel-based level (see Figure S3

in supplement). Consequently, we do not imply measuring scale-free

dynamics themselves via the MF. Instead, the MF only represents fur-

ther validation of different power distributions, as the previously

applied median frequency in fMRI studies (Çatal et al., 2022;

Golesorkhi et al., 2022).

Our study comprised three specific aims. Aim one was the investi-

gation of scale-free dynamics in the core-periphery topography during

the resting-state. Based on findings that showed longer intrinsic neu-

ronal timescales in higher-order association cortices (Golesorkhi

et al., 2021; Wolff et al., 2022), we predicted higher PLE and lower

MF levels for the core relative to the periphery regions.

Aim two examined if and to what degree the brain's scale-free

dynamics in the core-periphery topography change during a task compris-

ing infra-slow frequency task periodicity. The task design included auditory

self-versus non-self-related trials that lasted 2 s each and were separated

by very long infra-slow frequency inter-trial intervals (ITI) ranging from

52 to 60 s (frequency band = 0.016–0.019 Hz) (Huang et al., 2017).

1998 KLAR ET AL.
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These long ITI allowed the proper assessment of scale-free dynamics

as they provided sufficient time to include the undershoot duration

(Boynton et al., 1996; Yacoub et al., 2006) with its return to the base-

line level of the brain's ongoing spontaneous activity (Huang

et al., 2017). We predicted PLE increases and MF decreases in task

states relative to rest based on the task's infra-slow periodicity.

Aim three investigated to what extent the task's atypically slow

event rates, namely the task's periodicity (ITI = 52–60 s; 0.016–

0.019 Hz), modulates potential PLE increases from rest to task states.

Besides applying several control measurements for our PLE and MF

findings, we used the IRASA method to check wherever the observed

power-law distributions conformed to a scale-free nature. Subse-

quently, we computed a simulation model for various degrees of extrin-

sic input periodicity as a further computational check for the brain's/

model's PLE and MF reactivity. In addition to empirical and computa-

tional control measurements focusing on our primary dataset, we

assessed a second replication fMRI dataset that offered inter-trial inter-

vals from 15.5 to 25.5 s corresponding to the frequency band 0.039–

0.064 Hz. This second dataset replicated the core-periphery differences

and rest-to-task transitions of the PLE and MF measurements.

In summary, we first demonstrate individual degrees of scale-free

dynamics between core and periphery regions in the resting-state: the

core region showed higher PLE and lower MF levels than the periphery

region. Second, we observed significant PLE increases and MF decreases

in core and periphery regions during task states. Especially the unimodal

periphery region showed significantly higher PLE increases during the

task compared to the transmodal core region. Moreover, resting-state

PLE and MF differences between the core and periphery disappeared

during the task's infra-slow frequency periodicity.

2 | METHODS AND MATERIALS

2.1 | Subjects

We re-used data from 25 right-handed adults (male/female: 13/12;

age 20–29 years) from a previous study (Huang et al., 2017). Partici-

pants had no history of psychiatric or neurological disorders as con-

firmed by a standard MRI safety screening questionnaire. Two

participants were excluded due to severe head motion during fMRI

scanning. Before scanning, participants answered a questionnaire with

360 questions about personal experiences regarding hobbies, birth-

days, and places visited as well as simple, generally known facts. Of

these, 120 questions were selected randomly for each participant

(after excluding difficult questions; see Huang et al. (2017) for details).

Sixty questions were randomly selected per yes/no category. Each of

the questions was digitally recorded into an audio clip lasting 2 sec-

onds by the same experimenter, and was presented once during the

fMRI scan session.

2.2 | Resting-state

Before the task run, a 6 min resting-state run (356 volumes) was

recorded in the original study (Huang et al., 2017). Subjects were

instructed to relax, stay awake, and keep their eyes closes during the

scan. The brain's spontaneous activity (resting-state) served as a

baseline for comparison with task-evoked effects on post-stimulus

activity in the task run. This allowed multiple kinds of rest-task

comparisons.

F IGURE 1 Two established templates divide the human cerebral cortex into higher-order association cortices “core” and lower-order
sensorimotor cortices “periphery”. In the Schaefer/Margulies topography (SCP) cortical regions were derived from the Schaefer template
(Schaefer et al., 2018) and divided into “transmodal core” and “unimodal periphery” ROIs based on a principal gradient that describes various
cortical features (see methods part for details) (Golesorkhi et al., 2021; Huntenburg et al., 2017; Huntenburg et al., 2018; Margulies et al., 2016).
The Ji/Ito (JCP) topography (Ito et al., 2020) is likewise based on a transmodal-unimodal division from the Ji template (Ji et al., 2019). The regions

were divided into core or periphery based on the transmodal-unimodal definition in Ito et al. (2020)

KLAR ET AL. 1999
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2.3 | Task design

The analyzed dataset stems from Huang et al. (2017), and a previous

study in China (Huang et al., 2014) developed the task design. The

subjects had to fill out a questionnaire including 360 questions about

self-referential (autobiographical) information, such as hobbies, birth-

days, places visited, and simple facts. All questions contained 6–12

Chinese syllables. A five-point rating scale (1 denoting easiest and

5 denoting hardest) was used to estimate each question's difficulty.

Questions with a score of 3 or higher were considered difficult and

excluded to minimize the task's difficulty. Finally, after excluding the

difficult questions, 120 questions were randomly selected for each

subject. As difficult questions made up a very small proportion across

all subjects, there was a sufficient number of questions with a score

of <3 for each subject. Half of the questions required a “Yes”
response, and the other half a “No” response. Each question was digi-

tally recorded into an audio clip lasting 2 s by the same experimenter

and was presented once during the fMRI scan session.

We analyzed one task run with a length of 20 min (1184 vol-

umes). The task design comprised 20 trials separated by very long ITI

varying unpredictably from 52 to 60 s, jittered in 2 s steps. The ITI

range corresponded to the infra-slow frequency range of 0.016–

0.019 Hz. The 20 trials were assigned pseudorandomly to the

120 questions, and each trial's auditory stimulus time lasted 2 s. In

addition to assessing the BOLD signal evoked by the trials, such long

ITIs provide sufficient time for the undershoot (Boynton et al., 1996;

Yacoub et al., 2006) and the return to the baseline level of brain activ-

ity (see figure 1 in Huang et al. (2017)). The long ITIs additionally

avoided potential nonlinearities caused by overlapping hemodynamic

responses between succeeding trials (Fox et al., 2006). During trials,

participants were instructed to press a left or right button of a

response box with their right-hand index or middle finger to indicate a

“yes” or “no” answer to the auditory stimuli presented. To ensure par-

ticipant cooperation and alertness, responses were monitored during

the experiment. Stimulus presentation and response recording were

done using E-Prime (Psychology Software Tools, Pittsburgh, PA), and

stimuli were delivered via an audiovisual stimulus presentation system

designed for an MRI environment. The volume of the headphones

was adjusted to the comfort level of each subject.

2.4 | MRI data acquisition

A GE 3 T (Discovery MR750) scanner with a standard head 8-channel

head coil was used to acquire gradient-echo echo-planar imaging (EPI)

images of the whole brain (time repetition 1.0 s; time echo 25 ms;

21 slices; slice thickness = 6 mm; no inter-slice gap; spacing = 0; field

of view = 210 mm2; flip angle = 76�; image matrix: 64 � 64). The

resting-state comprised with 360 volumes (6 min); the task run com-

prised 1184 volumes (19:44 min). During each EPI scan, subjects were

instructed to relax, stay awake, and keep their eyes closed. Eye-

tracking during fMRI was not available, but off-line post-scan record-

ings ensured that subjects complied with this instruction. Cardiac and

respiratory physiological signals were recorded for resting-state and

task runs.

2.5 | fMRI data preprocessing

Preprocessing was performed using AFNI (https://afni.nimh.nih.gov)

(Cox, 1996) applying the following steps: (1) removing the first four

volumes of each fMRI run; (2) physiological noise regression using

time-locked cardiac and respiratory signals using AFNI's RETROICOR;

(3) slice timing correction; (4) rigid body realignment using AFNI's

3dvolreg for volume-wise realignment of estimated head motion

parameters. Subjects exhibiting more than 5% censored volumes in

the resting-state run were excluded from further data analysis. Vol-

umes with head motion shifts >0.3 mm or rotation >3� were censored

in both rest and task runs; (5) co-registration with high-resolution ana-

tomical images; (6) initial spatial normalization of the anatomical scans

into MNI152 2009c stereotactic space and subsequent functional to

anatomical alignment (normalization); (7) functional resampling to

3 � 3 � 3mm3 voxels; (8) regression of linear and nonlinear drift

(equivalent to a high-pass filtering of 0.0067 Hz), average eroded

white matter signal (WM) and CSF to reduce non-neuronal noise (Jo

et al., 2013); and (9) spatial smoothing using an 8 mm full-width at

half-maximum isotropic Gaussian kernel.

2.6 | Analysis of PLE and MF in a replication fMRI
dataset

A second clinical dataset of subjects undergoing an elective trans-

sphenoidal approach for resection of a pituitary microadenoma from

Huang et al. (2018) served to replicate the findings of our analysis.

The sample comprised 20 right-handed participants (male/female:

8/12; age 32–64 years) under conscious wakefulness. Analyses of

subjects in sedated and anesthetic states were not included. Six sub-

jects were removed due to low volume quality and a high level of

head motion. We utilized an 8 min eyes-closed resting-state (240 vol-

umes) and an 18 min auditory task with comprising self and non-self-

related trials (569 volumes) from the wakefulness session (TR = 2 s).

A sparse event-related design with ITI ranging from 15.5 to 25.5 s, jit-

tered by 2 s steps, was adopted. The task's temporal range corre-

sponds to the infra-slow frequency range of 0.039–0.064 Hz. Sixty

trials (30 self-related; 30 non-self-related), lasting for 0.5 s each, were

presented (Huang et al., 2018).

2.7 | Templates for the core-periphery topography

Two established templates for the cerebral cortex's core-periphery

topography were adopted. For template one (Schaefer/Margulies)

(Margulies et al., 2016), subsequently abbreviated “SCP”, cortical

regions were derived from the Schaefer atlas (Schaefer et al., 2018).

The second template stems from Ji/Ito (Ito et al., 2020), subsequently

2000 KLAR ET AL.
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abbreviated “JCP.” The SCP template comprises 200 and the JCP

template 360 cortical regions. The SCP template was divided into

seven networks: visual, SMN, dorsal attention (DAN), salience, limbic,

frontoparietal (FPN), and default-mode network (DMN). The JCP tem-

plate offers 12 networks: primary visual 1 (V1), primary visual 2 (V2),

auditory (AUD), SMN, cingulo-opercular (CON), DMN, dorsal atten-

tion (DAN), frontoparietal cognitive control (FPN), posterior multi-

modal (PMM), ventral multimodal (VMM), orbito-affective (ORA), and

language (LAN).

The SCP and JCP templates were divided into higher-order trans-

modal association and lower-order unimodal sensorimotor ROIs based

on the first principal gradient presented in (Golesorkhi et al., 2021;

Huntenburg et al., 2017; Huntenburg et al., 2018; Margulies

et al., 2016). This gradient measured the variance of cortical proper-

ties, such as functional and structural connectivity, cytoarchitecture,

myeloarchitecture, gene expression, and the length the brain's intrin-

sic neuronal timescales (Baldassano et al., 2017; Huntenburg

et al., 2018; Margulies et al., 2016). These studies demonstrated a

moderate relationship between the similarity of the aforementioned

gradient's properties between two or more regions and the region

position along the cortical surface. Following this gradient and previ-

ous analyses (Golesorkhi et al., 2022), the regions were assigned to

either “core” or “periphery” ROIs as follows. (1) SCP ROIs: based on

the networking assignment and first principal gradient (Margulies

et al., 2016), limbic, FPC, and DMN regions were included into core,

while visual, SMN, dorsal attention, and salience regions were

assigned to the periphery category. (2) JCP ROIs: based on the Ji/Ito

template and the unimodal-transmodal distinction (Ito et al., 2020),

DAN, PMM, VMM, ORA, LAN, CON, FPN, DMN were assigned to the

core region. The periphery regions comprised V1, V2, AUD, and SMN

networks.

It is noteworthy that the dorsal attention network (DAN) belongs

to the periphery region for the SCP ROI, whereas the DAN belongs to

the core region for the JCP ROI. The attribution of regions to either

core or periphery for the SCP ROI is based on the first principal gradi-

ent in Margulies et al. (2016). In the article by Margulies et al. (2016),

Figure 3b shows the DAN region's wide extension across unimodal

sensory regions, such as the visual and SMN cortices, and across het-

eromodal association regions, such as the frontoparietal and salience

networks. The attribution of the DAN to the periphery (SCP) and core

(JCP) thus presents an attempt to balance the DAN region's impact on

the core versus periphery PLE levels.

2.8 | Power-law exponent (PLE) analysis

Increasing frequencies go along with decreasing power following a

power-law function of P¼ 1
fβ
where f is frequency, P is power, and the

β is the PLE (Bak et al., 1987; Schroeder, 2009). Applying the loga-

rithm on the frequency-domain, that is, log(f) and log(P), reveals

inverse power-law distributions. The slope determined by a linear

regression using least-square estimation between log(f) and log(P) is

the PLE. The computation of the PLE was performed as follows. First,

AFNI's 3dPeriodogram transformed the time-series into the

frequency-domain on a voxel-based level. The power spectra were

cut to the frequency band 0.01–0.5 Hz. The lower frequency limit

was chosen to avoid signal contributions from scanner drift (Fransson

et al., 2013), whereas the higher limit was constrained by the sampling

rate (Nyquist frequency). For each subject the ROI-based (average)

log–log transformed power spectra were extracted and fitted with a

linear least-square regression.

2.9 | PLE control analysis I: IRASA method

To discard the possibility of the oscillatory component of the power

spectrum driving our results, we used irregular-resampling auto-

spectral analysis (IRASA) method to separate fractal component from

oscillatory component (Muthukumaraswamy & Liley, 2018; Wainio-

Theberge et al., 2021; Wainio-Theberge et al., 2022; Wen &

Liu, 2016). Briefly, the signal is resampled with a factor h ranging from

1.1 to 1.9 with steps of 0.05; and 1
h. Geometric means for of up and

downsampled PSDs were computed, then the median of power of the

geometric means across different h values was defined as the scale-

free component. The intuition behind the method is that the scale-

free method is resilient against resampling whereas oscillatory compo-

nent is not (Wen & Liu, 2016). PLE values were computed as the slope

of the linear regression fit to log-power and log-frequency, but in the

range of 0.01–0.25Hz since downsampling reduces the Nyquist fre-

quency. PLE values from the IRASA method were compared with the

conventional PLE results (recalculated in 0.01–0.25Hz range) using t-

tests.

2.10 | PLE control analysis II: Comparison with
surrogate data

To test the goodness of fit for scale-invariance, we adapted a good-

ness of fit test for power law distributions (Clauset et al., 2009) which

was used in fMRI studies (Çatal et al., 2022; He, 2011; Scalabrini

et al., 2017; Tagliazucchi et al., 2013). For each ROI in rest and task,

1000 time series of fractional Gaussian noise (fGN) with the same

length, standard deviation and Hurst exponent as averaged time series

of real data were simulated (Stoev et al., 2006). fGN is a model of sta-

tionary scale-free dynamics (Beran, 1994). Power laws were fitted to

each of the PSDs of synthetic time series and real data using the

maximum-likelihood estimation method (Clauset et al., 2009). We

used Kolmogorov–Smirnov distance D to measure the goodness of

fit: the larger the D, worse the fit. p-value was defined as the fraction

of synthetic time series with Ds that are larger than the D of the real

data. The hypothesis that the fMRI signal is scale-free was ruled out

if p < .05.

KLAR ET AL. 2001
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2.11 | Additional PLE control analyses

Besides the IRASA method and comparison with surrogate data, we

applied five additional control analyses for rest and task PLE using the

primary and replication datasets. The detailed results are presented in

the supplement.

• Two time windows (volumes 199–555 and 549–905) of the task

time-series were matched to the resting-state length of 356 vol-

umes. PLE and MF were computed for both windows to control

that higher task PLE values were not a result of the task run's lon-

ger length (compared to the resting-state run). Figures S1 and S2,

including Table S1, in the supplement, show the results.

• PLE and MF were computed and correlated on a voxel-based level

for each subject in all ROIs, including rest and task states, to assess

the systematic relationship between PLE and MF. The voxel-based

PLE-MF analysis allowed checking wherever the ROI-based aver-

ages also hold and correlate on the voxel level in rest and task

states, respectively. Figure S3 and Table S2 in the supplement

show the results.

• We individually computed time windows for single-trial PLE and MF

(each window = 2 s trial plus 52 s post-stimulus activity) for self-

related and non-self-related trials. Albeit in a limited frequency range,

this allowed controlling if the task effect on PLE and MF holds irre-

spective of the task's cognitive kind or content (self or non-self).

Figure S4 and Table S3 in the supplement show the results.

• Several studies demonstrated variance of cortical features along a

gradient, such as for functional and structural connectivity,

cytoarchitecture, myeloarchitecture, gene expression, and the

length (plus power) of the brain's intrinsic neural timescales

(Baldassano et al., 2017; Huntenburg et al., 2018; Margulies

et al., 2016). We computed the PLE and MF for all single ROIs that

constitute the SCP topography to control that PLE and MF

changes in response to the task were manifest across the core-

periphery topography. Figure S5 in the supplement shows the

results.

• Besides applying motion correction in the preprocessing, we

extracted all six estimated head motion time-series (three transla-

tional and three rotational motion parameters). The head motion

time-series were then transformed into the log–log frequency-

domain to compute the head motion PLE. This allowed us to corre-

late the BOLD's PLE for all ROIs in rest and task states with the

estimated head motion PLE (Scalabrini et al., 2019) to exclude the

possibility that BOLD PLE results were significantly affected by the

subjects' head motion during functional scanning. Table S5 in the

supplement shows the results.

2.12 | Correlation between task PLE and reaction
times

Our fMRI analysis' third aim was the investigation to what extent the

task's infra-slow event rates (ITI = 52–60 s; 0.016–0.019 Hz) can

explain the potential PLE increase from rest to task states. It requires

consideration that PLE changes in task states can also rest on cogni-

tive factors from the subjects' ongoing experience. Paradigmatically,

subjects may undergo expectational or attentional differences during

task runs that affect the BOLD's power distribution, including the

PLE, that diverges from the resting-state. Therefore, we correlated

the task's PLE for all ROIs with the subjects' reaction times. More pre-

cisely, we applied the Pearson and Spearman correlation for self- and

non-self-related trials with the ROI-based PLE values to check wher-

ever the PLE in task states correlated with the subjects' reaction

times. A substantial modulation of PLE changes in task states by cog-

nitive processes such as attention is unlikely if a lack of significant cor-

relations occurs across all ROIs.

2.13 | Mean frequency (MF) analysis

Computation of MF used AFNI's 3dPeriodogram to compute the

power spectrum on a voxel-based level. The same frequency band

(0.01–0.5 Hz) as for the PLE computation was applied. In a second

step, AFNI's 3dTstat was used to compute both (1) the sum of power

multiplied by frequency and (2) the sum of power. The power times

frequency is then divided by the power. Consequently, only the MF

per voxel remains. In difference to the PLE, we computed the MF on

normal (non-logarithmic) scale in the limited frequency band of 0.01

to 0.5 Hz. The limited frequency band prevents the MF from going up

or down to infinity in case of theoretically infinite scaling.

2.14 | Calculations of PLE and MF rest-task
differences

Beside core versus periphery comparisons that we individually

assessed in resting-state and task, we additionally calculated three

further comparisons that statistically compared rest versus task states.

The comparisons between rest and task states followed aim two of

our analysis, namely to examine to what degree the brain's scale-free

dynamics change or align during the task's infra-slow periodicity. We

computed these three calculations for both ROIs (SCP and JCP) using

the subjects' ROI-based mean values. Furthermore, the three calcula-

tions were individually applied for both measurements (PLE and MF)

and we labeled them: (1) Intra-ROI Rest-Task Difference, (2) Inter-ROI

Rest-Task Difference, and (3) Core-Periphery Difference. We conse-

quently describe the methodological approach for all three additional

calculations.

• Intra-ROI rest-task difference: The first calculation analyzed wher-

ever the observed rest-to-task PLE and MF changes were statisti-

cally significant. We individually performed this calculation for the

core and periphery regions. The results subsequently allowed

checking the statistical significance via paired t-tests of rest versus

task PLE and MF changes. We repeated the same calculation for

the periphery region.

2002 KLAR ET AL.
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• Inter-ROI rest-task difference: The second calculation first sub-

tracted rest from task values individually for the PLE and MF

within each region. The results first revealed the absolute PLE and

MF changes within the core and periphery regions. In a second

step, we statistically compared the absolute change between core

and periphery using a paired t-test for PLE and MF. We accordingly

labeled this calculation “Inter-ROI rest-task difference” to test

wherever the periphery region exhibits a superior reactivity or

alignment in task states compared to the core region.

• Core-periphery difference: The third calculation first subtracted

periphery from core values, individually for resting-state and task.

In a second step, using paired t-tests we statistically compared the

rest (core minus periphery) versus task (core minus periphery)

results. This calculation allowed testing wherever topographical

differences of the PLE and MF observed in the resting-state signifi-

cantly changed in task states.

2.15 | Simulation of task periodicity in an
extended frequency range

A simulation model was applied to further investigate the effect of

the task's frequency in an extended frequency range. Five thousand

instances of colored noise with a power spectral density of P¼ 1=fβ

where f is frequency, β is the slope of the power spectrum and P is

the power of that respective frequency were simulated with

MATLAB's dsp.ColoredNoise function from DSP System Toolbox.

dsp.ColoredNoise uses an algorithm described in Kasdin (1995).

Briefly, Gaussian white noise is colored by multiplication by an autore-

gressive model of order 63 in the frequency domain. β values were

pseudorandomly chosen from a uniform distribution between �0.5

and �1.5 to be consistent with the empirical data observed across the

individual subjects. PLE and MF values were calculated in the simu-

lated noises. In a second step, to simulate the effect of the task, sine

waves with three different frequencies, 0.016Hz (low), 0.18Hz (mid),

and 0.45Hz (high) representing task periodicity were generated and

added to the original noises. These sine waves were added to the

original colored noises and PLE and MF values were again calculated.

To see the effect of task periodicity on the change in PLE (and MF),

the change in those measures after the addition of the sine wave was

calculated.

3 | RESULTS

3.1 | PLE in resting-state

The PLE values of both core regions (SCP = �1.108; JCP = �1.101)

were significantly higher than in the periphery regions

(SCP = �1.021, t = �5.71, p < .001; JCP = �1.008, t = �5.97,

p < .001). Plotted on log–log graph paper, the resting-state power

spectra showed a linear decrease as a function of frequency, that is,

typical inverse power-law distributions for brain dynamics in the range

of pink noise (Gisiger, 2001; He, 2014; He et al., 2010). We addition-

ally computed the coefficient of variation (CV) for core and periphery

regions. A higher compared to a lower CV can represent the capacity

for better input processing (Golesorkhi et al., 2021; Zilio et al., 2021).

The CV was significantly higher (p < .001) in the periphery only for

the JCP ROI (core = �0.156, periphery = �0.184), whereas the CV

for the SCP ROI (core = �0.154, periphery = �0.171) yielded no sta-

tistical significance (p = .945).

3.2 | PLE in task

Significant core-periphery PLE differences, as observed in the resting-

state, completely vanished during task states. The PLE values between

core and periphery converged for both ROIs (SCP: t = 0.08, p = .936;

JCP: t = 0.48, p = .634). Compared to the resting-state, PLE in both core

(SCP = �1.281; JCP = �1.248) and periphery PLE (SCP = �1.271;

JCP = �1.258) significantly increased. In contrast to the PLE, the inter-

subject CV of the PLE decreased in both core and periphery regions dur-

ing task (compared to the resting-state). The CV was significantly higher

(p < .001) in the periphery for both ROIs (SCP = �0.148; JCP = �0.162)

compared to the core (SCP = �0.134; JCP = �0.135). Figure 2 displays

the resting-state and task power-laws, where each line represents an

individual subject, including the mean PLE across subjects.

3.3 | Correlation between task PLE and reaction
times

The mean reaction time for self-related trials across subjects was

2.39 s (SD = 0.298; CV = 0.125), and 2.76 s for non-self-related trials

(SD = 0.445; CV = 0.162). Faster reaction times to self- versus non-

self-related trials were expected based on a previous EEG study

(Kolvoort et al., 2020) investigating scale-free dynamics, including

self- versus non-self-related processing.

The correlations between the task's PLE results for all ROIs and

the subjects' reaction times to self- and non-self-related trials turned

out non-significant. The p-values for the Pearson correlation were all

above p ≥ .1775, whereas the p-values for the Spearman correlation

were all above p ≥ .1096 without applying corrections for multiple

comparisons. Additionally, both Pearson's correlation coefficient and

Spearman's rho showed much higher values between the task's PLE

levels in all four ROIs (SCP and JCP core-periphery) and the non-self-

related trials (as compared to self-related trials). These observations

indicate that observed PLE increases in task states were unlikely pri-

mary driven by attentional processes or a cognitive preparation

towards the occurrence of the trials, precisely because one would

expect a higher correlation between the PLE and self-related trials,

instead of the observed higher correlation between PLE and non-self-

related trials. The detailed results are shown in Figure S6 and

Table S6.

KLAR ET AL. 2003
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3.4 | MF in resting-state

The MF in both periphery regions (SCP = 0.14; JCP = 0.14) was signifi-

cantly higher than in the corresponding core regions (SCP = 0.132,

t = �6.24, p < .001; JCP = 0.133, t = �4.94, p < .001). This indicates

that periphery regions contained more power in faster relative to slower

frequencies compared to the core regions. Inter-subject CV of MF values

showed the same pattern as the CV of PLE, being significantly higher

(p < .001) in the periphery regions (SCP= 0.118; JCP = 0.123) compared

to the corresponding core regions (SCP = 0.102; JCP = 0.094).

F IGURE 2 Inverse power-law distributions and PLE where each line represents one subject. a) SCP (row one) and JCP (row two) resting-
state. The core-periphery comparison yielded significant PLE differences for both ROIs. b) SCP (row one) and JCP (row two) task. The PLE
significantly increased and converged between core and periphery for the SCP and JCP ROIs in task states. Vertical bars in the task log–log
power spectra represent the inter-trial interval (52–60 s; 0.016–0.019 Hz). CV, coefficient of variation; PLE, power-law exponent; SD, standard
deviation

2004 KLAR ET AL.
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3.5 | MF in task

In contrast to the resting-state MF and in accordance with the PLE

task results, the core-periphery comparison no longer yielded a signifi-

cant difference in task states. Both MF core (SCP = 0.112;

JCP = 0.114) and MF periphery (SCP = 0.112; JCP = 0.113)

decreased to the same level, respectively (SCP: t = 0.4, p = .696; JCP:

t = 0.94, p = .359). Consequently, the task state induced a shift of

power towards slower frequencies compared to the initial resting-

state power distribution. The inter-subject CV values slightly

increased compared to the resting-state except for SCP Core. MF

resting-state and task results are displayed in Figure 3 where each line

F IGURE 3 Power spectra and MF where each line represents one subject. (a) SCP (row one) and JCP (row two) resting-state. The core-
periphery comparison yielded significant MF differences for both ROIs. (b) SCP (row one) and JCP (row two) task. In task, MF significantly
decreased and converged between core and periphery for both the SCP and JCP ROIs. Vertical bars in the power spectra represent the MF and
inter-trial interval (52–60 s; 0.016–0.019 Hz). CV, coefficient of variation; MF, mean frequency; SD, standard deviation

KLAR ET AL. 2005
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represents an individual subject. Table 1 provides an overview of both

PLE and MF results in resting-state and task.

3.6 | Additional PLE and MF control analyses
results

We applied several control analyses using the primary and replication

datasets to validate the PLE and MF results. First, we computed the

PLE and MF using two time windows of the task time-series matched

to the resting-state length. The two time-matched task windows

allowed checking the possibility that PLE increases and MF decrease

in the full-length task, as compared to the resting-state, resulting in

the task's higher length. Both the PLE and the MF task results

observed in the time-matched task windows matched the full-length

task run and are displayed in Figures S1 and S2, including Table S1, in

the supplement.

Second, we computed and correlated PLE and MF on a voxel-

based level in addition to the ROI-based level. The systematic rela-

tionship between PLE and MF obtained for the ROI-based level did

hold on the voxel-based level, showing high correlations in all ROIs

(r ≥ 0.951). Figure S3 and Table S2 in the supplement display the

results. The voxel-based PLE results in Figure 3 also highlight that

voxel-based PLE values range from white noise (PLE = � 0) over pink

noise (PLE = �1) to brown noise (PLE = �2). Hence, it is important to

consider that the observed pink noise in the core-periphery topogra-

phy during rest and task states represents an ROI-based average,

while the voxel-based BOLD signal spans across a mutual continuum

of PLE levels from white to brown noise.

Third, individual time windows for single-trial PLE and MF (each

window = 2 s trial plus 52 s post-stimulus activity) for self-related and

non-self-related trials showed no statistically significant differences.

Neither the PLE nor the MF results varied between self- versus non-

self-related time windows, suggesting that PLE and MF changes were

not dependent on the task's cognitive kind or content.

Fourth, we computed single ROI (SCP) PLE and MF results to

control that the PLE increased and that MF decreased from rest to

task states in all single ROIs as observed in the core-periphery

topography. The single ROI results, presented in Figure S5 and

Table S4, followed the same rest-to-task changes that we observed in

the core-periphery topography.

Fifth, the six head motion parameters' PLE levels did not substan-

tially correlate with the BOLD's PLE shown in Table S5. This result

implies the independence of the BOLD's PLE from head motion

effects.

3.7 | PLE rest-task differences

Besides the presented core versus periphery comparisons that we

individually assessed in rest and task states above, we calculated three

additional comparisons (see the method part for details on the three

additional PLE and MF calculations). The three additional PLE and MF

calculations followed aim two of our analysis, namely the comparison

between rest and task states to investigate the brain's reactivity or

alignment with the task's infra-slow periodicity. We subsequently pre-

sent the PLE results, whereas the MF results follow in the

section below.

(1) Intra-ROI rest-task difference: The PLE significantly increased

from resting-state to task for the core regions (SCP: t = 5.28,

p < .001; JCP: t = 5.58, p < .001). The periphery regions showed an

even higher PLE increase in response to task states (SCP: t = 6.83,

p < .001; JCP: t = 6.83, p < .001). Consequently, the periphery regions

reacted or aligned best to the task by showing the highest PLE and

MF changes compared to the core regions.

(2) Inter-ROI rest-task difference: The highest differences were

observed for the periphery (SCP: PLE = 0.221; JCP: PLE = 0.25) and

lower absolute differences for the core regions (SCP: PLE = 0.139;

JCP: PLE = 0.147). These results were significant for both SCP

(t = �3.97, p < .001) and JCP (t = �4.72, p < .001) ROIs and highlight

that, conceived in absolute rest minus task values, the periphery

regions exhibited a stronger alignment with the task compared to the

core regions.

(3) Core-periphery difference: The statistical comparison between

core minus periphery (rest) and core minus periphery (task) yielded

significant results (SCP: t = 3.97, p < .001; JCP: t = �4.72, p < .001).

TABLE 1 PLE and MF core-periphery comparison

Computations Run ROI Core Periphery t-value p-value

PLE Rest SCP �1.108 (�0.154/0.173) �1.021 (�0.171/0.174) �5.71 p < .001

JCP �1.101 (�0.156/0.172) �1.008 (�0.184/0.186) �5.97 p < .001

Task SCP �1.281 (�0.134/0.172) �1.271 (�0.148/0.186) 0.08 .936

JCP �1.248 (�0.136/0.17) �1.258 (�0.162/0.203) 0.48 .634

MF Rest SCP 0.132 (0.102/0.013) 0.14 (0.118/0.016) �6.24 p < 0.001

JCP 0.133 (0.094/0.013) 0.1402 (0.123/0.017) �4.94 p < .001

Task SCP 0.112 (0.098/0.011) 0.112 (0.144/0.016) 0.40 .696

JCP 0.114 (0.099/0.011) 0.113 (0.151/0.017) 0.94 .359

Note: Data represents mean values including their respective coefficient of variation (CV) (first value or left in bracket) and standard deviation (SD) (second

or right value in bracket). MF, mean frequency; PLE, power-law exponent; statistics, student's paired t-test.

2006 KLAR ET AL.
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These results highlight that the topographical differences of the PLE

observed in the resting-state significantly diminished in task states.

Figure 4 displays the additional three calculations.

3.8 | MF rest-task differences

The three additional comparisons for the MF follow subsequently.

(1) Intra-ROI rest-task difference: MF values significantly

decreased from resting-state to task for core (SCP: t = 8.69, p < .001;

JCP: 8.69, p < .001) and periphery (SCP: t = 8.26, p < .001; JCP:

t = 8.1, p < .001) regions. Decreasing MF values in task states follow-

ing observed PLE increases in task states. A shift of power from faster

to slower frequencies increases the inverse power-law distributions'

slope (PLE) so that moment statistics, such as the mean, also shift to

relatively slower frequencies.

(2) Inter-ROI rest-task difference: The periphery regions yielded

the highest differences, and the comparison with the core regions

yielded statistical significance (SCP: t = �4.35, p < .001; JCP:

t = �4.63, p < .001). Therefore, absolute MF decreases to slower fre-

quency power in response to task states were higher in the periphery

than in the core region.

(3) Core-periphery difference: The statistical comparison

between core minus periphery (rest) and core minus periphery

(task) yielded significant results (SCP: t = �4.35, p < .001; JCP:

t = �4.63, p < .001). As observed for the PLE, topographical

differences of MF prevalent in the resting-state dissolved in task

states. Figure 5 displays the results of the three additional MF cal-

culations. Table 2 summarizes the three additional PLE and MF

calculations.

3.9 | PLE control analysis I: Distinction between
fractal and oscillatory components (IRASA)

The IRASA method (Wen & Liu, 2016) was applied to separate oscilla-

tory and fractal components of the power spectrum and previously

successfully in EEG/MEG (Wainio-Theberge et al., 2021; Wainio-

Theberge et al., 2022). The comparison between the conventionally

computed PLE presented above, including both fractal and oscillatory

components in the power spectrum, and the IRASA method obtained

fractal-based PLE values (exclusion of oscillatory components) for the

SCP and JCP ROIs in rest and task states are displayed in Figure 6.

The comparison between both analysis methods yielded no significant

differences. The IRASA results indicate that observed PLE increases in

task states were not driven by oscillatory components. Instead, the

IRASA results demonstrate that the observed PLE increases in task

reflect a genuine change of the brain's fractal or scale-free dynamics,

that is, a real change of the power-law distribution's slope across the

different frequency bands rather than a change in only a particular

oscillatory frequency related to the task's infra-slow frequency or

periodicity.

F IGURE 4 Three additional PLE comparisons where each line represents one subject. (a) SCP ROI results. The left plot (intra-ROI rest-task
difference) shows the PLE increase from rest to task states for all subjects in core and periphery, respectively. The middle plot (inter-ROI rest-task
difference) shows task values subtracted from rest values, respectively for core and periphery. The right plot (core-periphery difference) displays
the results of the core minus periphery calculations for rest and task, respectively. (b) JCP ROI results for the same three PLE comparisons

KLAR ET AL. 2007
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F IGURE 5 Three additional MF calculations where each line represents one subject. (a) SCP ROI results. The left plot (intra-ROI rest-task
difference) shows the MF decreases from rest to task states for all subjects in core and periphery, respectively. The middle plot (inter-ROI rest-
task differences) shows task values subtracted from rest values, respectively for core and periphery. The right plot (core-periphery difference)
displays the results of the core minus periphery calculations for rest and task, respectively. (b) JCP ROI results for the same three MF comparisons

TABLE 2 Intra-ROI rest-task
difference, inter-ROI rest-task difference,
and core-periphery difference

Computations ROIs Rest Task t-value p-value

Intra-ROI rest-task difference

PLE SCP Core �1.108 �1.246 5.276 p < .001

SCP Periphery �1.027 �1.248 6.834 p < .001

JCP Core �1.101 �1.248 5.578 p < .001

JCP Periphery �1.008 �1.258 7.378 p < .001

MF SCP Core 0.131 0.114 8.689 p < .001

SCP Periphery 0.138 0.113 8.256 p < .001

JCP Core 0.133 0.114 8.685 p < .001

JCP Periphery 0.140 0.113 8.098 p < .001

Computations ROIs Core Periphery t-value p-value

Inter-ROI rest-task difference

PLE SCP 0.139 0.221 �3.967 p < .001

JCP 0.147 0.250 �4.718 p < .001

MF SCP 0.017 0.025 �4.348 p < .001

JCP 0.019 0.027 �4.634 p < .001

Computations ROIs Rest Task t-value p-value

Core-periphery difference

PLE SCP �0.081 0.001 �3.967 p < .001

JCP �0.093 0.009 �4.718 p < .001

MF SCP �0.007 0.0006 �4.348 p < .001

JCP �0.007 0.0015 �4.634 p < .001

Note: Data represents mean values. MF, mean frequency; PLE, power-law exponent; statistics, student's

paired t-test.

2008 KLAR ET AL.
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3.10 | PLE control analysis II: Comparison with
surrogate data

In addition to the IRASA method, we further tested the suggested

scale-free dynamics of our data by comparing the goodness of fit

of the power-law to the PSDs of real data and simulated fractional

Gaussian noise (fGN) (Çatal et al., 2022; Clauset et al., 2009;

He, 2011; Scalabrini et al., 2017; Tagliazucchi et al., 2013). p-

values were obtained for all ROIs. This implies that the fraction of

synthetic time-series had a significantly worse fit than the real

data. The p-values for all ROIs exceeded .1, except for the SCP

Periphery in Task (p = .057). Except for this ROI, the results show

that the fraction of synthetic time-series had a significantly worse

fit compared to the empirical data. The results can be found in

Table S7.

3.11 | PLE and MF results in the replication
dataset

Besides analyses in our primary dataset, we assessed the core versus

periphery PLE and MF differences, including the variables rest-to-task

transitions, in a second replication dataset (Huang et al., 2018). This

dataset offered a comparable task design that, like our primary data-

set, included self and non-self-related trials with shorter yet long ITI

ranging from 15.5–25.5 s (0.039–0.064 Hz). All PLE (Figure S7) and

MF (Figure S8) results in the core-periphery topography, including

their rest versus task changes, obtained in the primary dataset were

successfully replicated in the same SCP and JCP ROIs (see also

Table S5 for an overview of PLE and MF results).

It is noteworthy that we observed lower PLE levels in the replica-

tion dataset in rest (PLE � �0.8) and task (PLE � �0.89) states

F IGURE 6 Application of the IRASA method. PLE values were calculated via the IRASA method and the conventional method for both the
SCP and JCP ROIs including rest and task states. A significant difference between the IRASA and conventional method only occurred in the SCP
periphery ROI

KLAR ET AL. 2009
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compared to our primary dataset (rest PLE � �1.05; task

PLE � �1.24). Two possible reasons may account for different abso-

lute PLE levels between both datasets.

One possible reason is that the primary dataset subjects' age

spanned from 20 to 29 years, whereas the replication dataset

clinical subjects' ages spanned from 32 to 64 years. Churchill

et al. (2016) investigated scale-free dynamics in fMRI via the

Hurst exponent, a measure of LRTCs in the time-series. They

compared two groups of younger subjects (20–33 years, median

age 24) versus older subjects (61–82 years, median age 68) con-

cerning aging effects on fractal scaling. In short, Churchill et al.

(2016) observed that the older group showed higher decreases in

the Hurst exponent across task states in several brain regions

compared to the younger group. Another fMRI study (Dong

et al., 2018) also investigated scale-free dynamics via the Hurst

exponent in 116 healthy subjects (19–85 years, median age 43)

and observed increases as well as decreases of the Hurst expo-

nent in different brain regions, hence also underlining the effect

of age on scale-free dynamics.

Another possibility is that impacts on the power-law distribu-

tions and PLE can stem from different MRI scanners, including

diverging functional scan settings between the primary and replica-

tion datasets. Paradigmatically, the primary dataset used a repetition

time (TR) of 1 s, whereas the second replication dataset TR was 2 s.

Regarding the repetition time, Mikkelsen and Lund (2013) demon-

strated that the scaling index, in their analysis assessed via the Hurst

exponent, is sensitive to the sampling rate (time repetition) in fMRI

BOLD. We must interpret the absolute PLE and Hurst exponent

levels in fMRI with caution and focus on the relative differences

between regions, including relative (percentage) changes from rest

to task states that we compared between the two datasets ROIs in

Table 3. The percentage rest-to-task PLE increase between the pri-

mary and replication datasets shows a higher PLE increase in the pri-

mary dataset that comprised longer ITI. When comparing the

percentage PLE increases between both datasets, we found an

approximately �60–71% higher PLE increase in the primary dataset

with longer ITI (52–60 s) compared to the replication dataset with

shorter ITI (15.5–25.5 s). This comparison between both datasets

showed a stable relationship of the percentage rest-to-task PLE

increases within a range of 11%.

3.12 | Simulation of task periodicity in an
extended frequency range

To assess the relationship between the task's frequency and its effect

on the PLE and MF, we generated 5000 instances of colored noise,

and sine waves of frequencies 0.016, 0.18, and 0.45 Hz were added

(see Methods). We simulated 5000 instances of colored noise and

three levels of sine wave frequencies (0.016, 0.18, and 0.45 Hz) to

model the impact of the task's frequency (ITI) on the PLE and MF (see

the methods section for details). The slow wave frequency of

0.016 Hz increased the slope of the PLE (more negative slope) and

decreased the MF, consistent with the empirical findings from both

datasets. The mid-frequency oscillatory sine wave of 0.18 Hz caused

a minor impact on the model. Finally, the high-frequency sine wave of

0.45 Hz decreased the slope of the PLE and increased the MF, consis-

tent with the shorter ITI of other studies (He et al., 2010; Kasagi

et al., 2017; Lin et al., 2016). We used Pearson's correlation for the

PLE (r-values are shown in Figure 7). For MF, due to the nonlinearity

of the relationship between initial and task-evoked MF changes, we

used Spearman correlation and fitted second-order polynomials,

shown in Figure 7. Of note, the change in PLE and MF can be seen as

a function of the initial value in the low and high-frequency sine

waves, whereas this does not seem to be the case in mid-frequency.

Figure 7 displays the model's results.

4 | DISCUSSION

4.1 | Scale-free dynamics diverged between core
and periphery regions in the resting-state

Aim one of our fMRI analysis was the investigation of resting-state

scale-free dynamics in the cerebral cortex's core-periphery topogra-

phy. The resting-state provided a baseline for possible PLE and MF

changes in task states.

The core regions showed significantly higher PLE and lower MF

levels, as compared to the periphery regions, in the primary and sec-

ond replication datasets (see Figures S7 and S8 for the replication

results). Higher PLE levels in higher-order transmodal association cor-

tices converge with LRTCs and longer intrinsic neuronal timescales

TABLE 3 Relative or percentage PLE increase from rest to task states in a comparison between both datasets

ROI

Primary dataset (ITI = 52–60 s;

0.016–0.019 Hz)

Replication dataset (ITI = 15.5–25.5 s;

0.039–0.064 Hz)

Percentage increase of replication dataset

compared to. Primary dataset

SCP core 12.52 7.73 61.74

JCP core 13.37 9.55 68.47

SCP periphery 21.50 14.72 71.43

JCP periphery 24.82 14.96 60.27

Note: Data represents the intra-ROI percentage rest to task PLE increase in columns two (primary dataset) and three (replication dataset) of the Table. The

last column shows the percentage of the replication dataset's task PLE increase compared to the primary dataset's PLE increase.

2010 KLAR ET AL.
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observed in electrophysiological EEG plus MEG (Golesorkhi

et al., 2021; Wolff et al., 2022) and fMRI studies of the same regions

(Stephens et al., 2013; Yeshurun et al., 2021). Consequently, the

observed PLE levels in the frequency-domain in both core and periph-

ery regions correspond to resting-state scale-free dynamics found in

the time- and frequency-domain by other studies (Ciuciu et al., 2012;

Ciuciu et al., 2014; Rocca et al., 2018; Roisen & Shew, 2020).

The BOLD's relatively higher power in slow frequencies observed

in the core compared to the periphery regions reflects higher temporal

stability or autocorrelation of the signal in higher-order transmodal

cortices (Shew et al., 2015; Shew & Plenz, 2013; Tagliazucchi

et al., 2012). High-power and slow-frequency timescales naturally

carry information via longer temporal correlations over extended

periods, providing long-range memory effects in ongoing brain activity

(He, 2011; Linkenkaer-Hansen et al., 2001; Meisel et al., 2017;

Sporns, 2011; Tagliazucchi et al., 2013; Wolff et al., 2022). A theoreti-

cal inference based on the PLE and MF results is that the core regions

may exhibit a “robustness against rapid change” induced by ongoing

intero- and exteroceptive input streams from the body and the envi-

ronment. This robustness appeared to be particularly strong in the

core region, whereas the robustness was lower in the periphery, pos-

sibly due to the periphery's need for continuous sensitivity to sensory

stimuli.

Inspecting the inverse power-law distributions in Figure 2

revealed the periphery regions' higher inter-subject PLE variability,

especially in slower frequencies, compared to the core regions. The

periphery regions' higher inter-subject variability showed statistically

significant results in the JCP ROI's standard deviation and CV in the

primary dataset's resting-state. In the replication dataset's resting-

state, the periphery regions showed statistically significant higher

standard deviation and CV results in both the SCP and JCP ROIs.

Conversely, the core regions showed more uniform power-law

distributions between subjects (see especially the slower frequencies

in Figure 2), as mirrored in the SCP and JCP ROIs' CV and SD in the

main and replication datasets, with the only exception being the main

dataset's SCP ROI showing a higher SD in the core region. This obser-

vation might be in accordance with the idea that core regions exhibit

a “robustness against rapid change” to preserve the signal's identity

and higher autocorrelation over longer timescales. Low-power high-

frequency fluctuations are nested within high-power and low-

frequency timescales, allowing the brain to differentiate itself from

ongoing extrinsic perturbations, notably in the core region. The

periphery regions defined the other side of this mutual spectrum: the

periphery may lack the robustness of powerful longer timescales,

whereas the periphery regions provide a higher “space of possibilities”
amounting to higher degrees of freedom towards quickly aligning with

F IGURE 7 Computational model simulating three levels of task periodicity. We generated 5000 instances of colored noise (represented by
the dots in each plot) and added sine waves with frequencies of 0.016, 0.18, and 0.45 Hz. We calculated the PLE and MF values before and after
simulating the three levels of sine wave frequencies. The top row shows a continuum of initial PLE values before adding the sine waves (x-axis)
and the PLE change after adding the sine waves (y-axis). The bottom row shows the same continuum and change for the MF

KLAR ET AL. 2011
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extrinsic demands of the environment (Bertschinger &

Natschläger, 2004; Kello et al., 2010; Linkenkaer-Hansen et al., 2001;

Poil et al., 2008).

4.2 | Scale-free dynamics converged between core
and periphery regions in task states

Aim one provided the ground for aim two, namely the investigation of

whether brain activity shifts its power away from faster frequencies

towards slower frequencies, given a task paradigm with an atypical

inter-trial interval (ITI) that falls inside the infra-slow frequency band.

It is required to distinguish two questions and the associated aims

two and three here. Aim two focused on investigating if substantial

PLE and MF changes occur during task states relative to previously

observed resting-state levels. Another question is why the brain sig-

nificantly shifted its power towards slower frequencies in task states

and if this observation was related to the task's infra-slow interval, or

if cognitive processes during the task run, such as minder-wandering

or attention, primarily impacted the PLE increase in task states. This

question refers to aim three tackled in the next section. We subse-

quently elaborate on aim two.

Interestingly, the significant division between core and periphery

regions concerning PLE and MF measurements, as previously

observed in the resting-state, dissolved below statistical significance

in task states in the primary and replication datasets. We replicated

the PLE increase and MF decrease in task states and their respective

convergence between the core and periphery regions via computing

two task time windows. Both time windows were time-matched to

the resting-state length to rule out the possibility that the task's lon-

ger run impacted the PLE increase and core-periphery convergence

(see Figures S1, S2, and Table S1). Therefore, the degree of scale-free

dynamics measured by the PLE thus converged across the cerebral

cortex showing a holistic PLE increase in task states. We excluded the

possibility that the same PLE and MF levels in task states resulted

from single ROIs with extreme rest-to-task increases by analyzing PLE

and MF transitions from rest-to-task states in all ROIs that constituted

the SCP core-periphery topography. We observed significant PLE

increases and MF decreases across all single ROIs (see Figure S5 and

Table S4).

Concerning the convergence between the core and periphery

regions' PLE and MF levels in task states, we must remember that the

SCP and JCP core regions showed higher resting-state PLE levels.

Consequently, periphery regions showed relatively higher PLE

increases and MF decreases in the rest-to-task transition compared to

core regions shown in Figures 4 and 5 in the Section 3. Conceivable

are two theoretical possibilities for the periphery regions' relatively

higher PLE increase and MF decrease in task states: (1) faster and less

powerful timescales are naturally associated with shorter lifetimes as

faster timescales decay more rapidly. Consequently, sensory inputs

from the environment can imprint themselves more strongly in the

periphery regions, where exteroceptive inputs substantially shift the

brain's power distribution following the periphery's larger “space of

possibilities” for a brain-environment alignment, as mentioned in the

previous part (Heiney et al., 2021; Kello et al., 2010). (2) Another the-

oretical possibility is that the task's infra-slow frequency range better

matches or corresponds to the core regions' default (or resting-state)

infra-slow BOLD dynamics. Consequently, task-evoked re-

distributions of power across the frequency band turn out lower in

the core than in periphery regions, possibly because the core's pre-

stimulus dynamics or activity variability already matches the task's

dynamics to a better degree, hence providing a form of “preadapta-
tion” by the core regions.

4.3 | Modulation of scale-free dynamics by the
task's temporal structure

Aim two uncovered wherever substantial changes of scale-free

dynamics occur in task states relative to rest states. Aim three focused

to what extent the task's atypically slow event rates themselves, pro-

vided by the task's infra-slow periodicity in the primary dataset

(ITI = 52–60 s; 0.016–0.019 Hz) and the replication dataset

(ITI = 15.5–25.5 s; 0.039–0.064 Hz), modulated the significant PLE

increase from rest to task states.

The PLE increase in task states represents a surprising finding

since previous EEG, MEG, ECoG (He et al., 2010; Lin et al., 2016), and

fMRI (He et al., 2010; Kasagi et al., 2017) often observed PLE

decreases in relatively fast event-related and block task designs. Con-

versely, our fMRI analysis with atypically long ITI found substantial

PLE increases in task states across the cerebral cortex in two core-

periphery topographies (SCP and JCP) in the primary and replication

datasets. A straightforward inference to the task's ITI as a primary

modulatory factor for task-related PLE increases is flawed, since cog-

nitive processes, such as mind-wandering, attention, and other possi-

ble modulatory effects during the inter-trial interval, can also account

for the observed PLE increases in task states.

To control the impact of cognitive processes during the task run

in the primary dataset, we correlated the subjects' reaction times in

response to self- and non-self-related trials with the subjects' task

PLE levels. Our reasoning for testing the impact of cognitive pro-

cesses on the observed PLE increases in task states is as follows: a

statistically significant correlation between reaction times and PLE,

especially for self-related trials due to the faster reaction times

(mean = 2.39 s; SD = 0.29) compared to non-self-related trials

(mean = 2.76 s; SD = 0.45), could support the hypothesis that task-

related PLE increases can also root in cognitive processes. Across all

ROIs (SCP and JCP; core and periphery) the Pearson's correlation

coefficient and Spearman's rho lacked statistical significance, while on

average across ROIs, non-self-related trials showed a substantially

higher correlation with the PLE in task states (Pearson's r = 0.24;

Spearman's rho = 0.26) than self-related trials (Pearson's r = 0.033;

Spearman's rho = 0.078) (see Figure S6 and Table S6).

In addition to the question of wherever cognitive and other possi-

ble processes substantially modulated task-evoked PLE increases, one

could ask if self-related versus non-self-related trials individually

2012 KLAR ET AL.
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impacted the task's PLE increase. The computation of self-related and

non-self-related time windows demonstrated that neither the PLE nor

the MF time windows, where we compared self-related versus non-

self-related trials against each other, yielded significant differences in

any of the SCP and JCP ROIs (see Figure S4 and Table S3). These

results suggested that PLE increases and MF decreases in task states

are unlikely due to the task's cognitive kind or content.

Nonetheless, it requires consideration that while the correlations

between task PLE and the subjects' reaction times in response to the

trials (PLE-RT correlation) turned out non-significant, the 95% confi-

dence intervals showed a wide range, such as from �0.29 to 0.52 for

Pearson's r in the SCP core region (see Figure S6 and Table S6). Based

on these confidence intervals and the generally low results of power

tests that we applied for the correlations, we can neither rule out nor

suggest significant task PLE-RT correlations. Future studies offering

specifically designed task paradigms that systematically vary the task's

ITI, including neutral stimuli or tasks beyond a self- versus non-self-

related dichotomy, are required to investigate task-related PLE

changes in task designs that better diminish potential impacts of the

stimulus' cognitive kind, content, or demand.

Our fMRI analysis emphasizes the potential impact of the task's

temporal structure or ITI beyond the task's cognitive contents or

demands without negating possible contributions by cognitive modu-

lations. We suggest that besides other potential influences discussed

above and in the methodological limitations section, the task's tempo-

ral structure also modulated the brain's scale-free dynamics by

increasing their PLE in both the very slow ITI of the primary dataset

(0.016–0.019 Hz) and the slow ITI of the replication dataset (0.039–

0.064 Hz). The model results (Figure 7) of three sine wave frequencies

supported the modulatory role of the task's temporal structure on PLE

changes by demonstrating a systematic relationship between the

extrinsic frequency and the PLE changes.

Taking our observations together with previous findings of scale-

free dynamics (Beggs & Plenz, 2003; Cocchi et al., 2017; Morales &

Muñoz, 2021; Petermann et al., 2009; Shew et al., 2015; Shew &

Plenz, 2013; Tagliazucchi et al., 2012), scale-free dynamics appear to

operate on a mutual continuum (Figure 8). This continuum spans from

white, over pink, to brown noise in fMRI (see the voxel-based PLE

range in Figure S3). Several fMRI studies in the infra-slow band (0.01–

0.1 Hz) reported average PLE values between �0.4 to �1.1 (Ciuciu

et al., 2012; Fransson et al., 2013; He, 2011; Huang et al., 2017). Pink

noise dynamics are neither highly predictable, such as brown noise

with relatively stable dynamics or minor variations in time, nor entirely

unpredictable, such as white noise with high variability and lack of

regularity. Instead, pink noise represents an intermediate mixture

between variability and regularity. Following these findings, the brain's

pink noise likely reflects relatively high sensitivity towards sensory

input streams while preserving a sufficient amount of intrinsic tempo-

ral structure. We observed shifts of power more towards the slower

pole of brown noise in the task state comprising slow inter-trial inter-

vals, whereas power shifts more towards the faster end of white noise

often occurred in fast event-related designs with shorter ITI or task

states that required ongoing cognitive demands such as attention

(He, 2011; He et al., 2010; Kasagi et al., 2017; Lin et al., 2016).

4.4 | Methodological limitations

Several limitations of our fMRI analysis require consideration. Based

on our empirical findings and the model's results, we suggested that

the PLE can systematically vary in accordance with the task's fre-

quency range (ITI). However, the task's ITI represents only one of sev-

eral possible factors that can modulate PLE changes from rest to task

states, as implicated by another fMRI analysis (He, 2011).

The fMRI study by He (2011) also compared rest versus task

states, the latter with a comparable ITI of 17.3–30.2 s (frequency

band = 0.033–0.058 Hz) to our replication dataset ITI of 15.5–25.5 s

(0.039–0.064 Hz). Conversely to our observations of increased PLE

levels in task states, the findings by He (2011) showed significant PLE

decreases in various ROIs across the brain. The two conflicting results

are reconcilable by considering the different nature of the task itself

between the study by He (2011) and the primary and replication data-

sets analyzed by us. The task paradigm by He (2011) instructed sub-

jects to report via button press when an identical crosshair

occasionally changed from white to dark gray for short periods of only

250 ms. This kind of visual detection task requires the subjects' ongo-

ing attention to the crosshair because the subjects can otherwise eas-

ily miss the slight change of the crosshair's color occurring every

�17–30 s. The task paradigms of our primary and replication datasets

instructed the subjects' to perceive auditory stimuli where the head-

phone volume was adjusted to the comfort level for each subject indi-

vidually. Hence, the subjects could not miss the auditory stimuli,

reducing the load on cognitive attentional processes during the task

run. Based on the considerations above and suggested by He (2011),

it is feasible that brain activity shifted power towards faster frequen-

cies in the study by He (2011) to accommodate the subjects' ongoing

information processing. Conversely, a power shift towards slower fre-

quencies could be modulated by the tasks' infra-slow periodicity, as

observed in our primary and replication datasets. Especially required

are task designs constructed to precisely test the modulation of the

stimuli or task inter-trial intervals on rest-to-task PLE changes. In this

respect, our fMRI analysis' results cannot warrant that the task's ITI

primarily modulated the observed rest-to-task PLE increases. Instead,

our fMRI analysis indicates the potential impact of the task's temporal

structure on scale-free dynamics. Future studies offering task para-

digms that systematically vary the inter-trial intervals with neutral

stimuli beyond self- versus non-self-related trials are required.

Another limitation is the PLE comparison across different imag-

ing modalities. Further fMRI, EEG, and MEG studies are required to

investigate modulatory effects by various task inter-trial intervals

on scale-free brain dynamics. Task designs that systematically vary

the ITI are necessary for two reasons. First, EEG and MEG studies

reported different PLE levels (Bénar et al., 2019) compared to func-

tional MRI. Second, observed PLE values in fMRI are often lower

KLAR ET AL. 2013
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compared to PLE values in MEG and especially in EEG (see He et al.

(2010) for PLE comparisons between the imaging modalities). The

physiological foundation of scale-free dynamics, especially the

observed PLE transition from rest to task states, is not established

(Lin et al., 2016).

It also requires consideration that estimating scale-free dynamics

by inverse power-laws is methodologically not straightforward, and

the inference that a signal exhibits scale-free properties can be prob-

lematic. Paradigmatically, Broido and Clauset (2019) discuss the

often-made claim that networks are scale-free based on the estima-

tion that the fraction of nodes follows a power-law. The authors argue

that this claim is sometimes not warranted under more stringent sta-

tistical data testing. Rather than following a power-law, Broido and

Clauset (2019) suggest that the data may better be describable by a

log-normal or a heavy-tailed distribution that decays more slowly than

an exponential. We acknowledge that we tested our observed power-

laws to the best of our knowledge, whereas the results of even more

stringent tests remain unsolved and require application in future

studies.

Finally, the correlations between the subjects' reaction times to

the trials and the task-evoked PLE levels turned out low and non-sig-

nificant. However, it can be interesting for future investigations to

assess the probability that, in other datasets and task designs, PLE

increases or decreases are possibly predictable based on the subjects'

reaction times, highlighting a closer relationship between PLE changes

and behavioral task performance.

5 | CONCLUSION

This fMRI analysis investigated scale-free dynamics in the cerebral

cortex's core-periphery topography during the resting-state and a task

paradigm with atypical slow inter-trial intervals that fall within the

BOLD's infra-slow frequency band. We observed a significant division

between the PLE and MF levels between the core and periphery

regions in the resting-state. The transmodal core regions showed

higher PLE and lower MF levels than unimodal and sensory periphery

regions. In task states, the PLE increased and MF decreased while the

variables' levels between core and periphery regions converged,

respectively. A second dataset successfully replicated these observa-

tions. Additionally, a computational model supported that various

degrees of extrinsic frequencies, mimicking inter-trial intervals, can

impact the PLE and MF levels. Our fMRI study demonstrated that the

rest-to-task PLE modulation can dependent on the task's temporal

structure, represented by the task's inter-trial intervals. Albeit requir-

ing further investigation and empirical evidence in future studies, this

modulatory effect of the task's temporal structure offers the possibil-

ity to expand our horizon for understanding the brain-environment

interaction without neglecting other potential impacts on task-related

PLE changes. Albeit tentatively and in need of further neuroimaging

analyses, our findings suggest a dynamically driven matching process

between the brain and its context (environment), that is, temporo-

spatial alignment, which may play a role in consciousness (Northoff

et al., 2020; Northoff & Huang, 2017; Northoff & Zilio, 2022).

F IGURE 8 Colored noise spectrum of the power-law exponent (PLE) in fMRI. Resting-state recordings observed average PLE levels of �1
corresponding to pink noise. We also observed average ROI-based PLE levels of �1 (pink noise), while voxel-based PLE levels (see Figure S3)
ranged from white noise (PLE = 0) over pink to brown noise (PLE = �2). In fast event-related task designs, the PLE level often decreases towards
white noise (see introduction and discussion). Conversely, we observed PLE increases more towards brown noise in task states with trials in the
infra-slow frequency range supporting a modulatory role of the task's inter-trial interval on PLE changes
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